雖說(shuō)“學(xué)好數(shù)理化,走遍全天下”
但是,還是有很多童鞋栽在數(shù)學(xué)上
這次質(zhì)檢數(shù)學(xué),我們邀請(qǐng)了名師來(lái)點(diǎn)評(píng)
一起來(lái)看看吧!
點(diǎn)評(píng)2019年福州市質(zhì)檢數(shù)學(xué)
作者簡(jiǎn)介:福州八中 數(shù)學(xué)高級(jí)教師周平
//////////
二零一九市初模,試卷題型差不多。
立足三基抓主干,依綱靠本細(xì)琢磨。
新年伊始,一模鳴鑼。作為第一輪高考復(fù)習(xí)效果質(zhì)量檢測(cè),2018- -2019 學(xué)年度福州市高三第一學(xué)期質(zhì)量抽測(cè)數(shù)學(xué)(文理科)考試范圍除了理科數(shù)學(xué)的概率統(tǒng)計(jì)高考內(nèi)容含選考部分外,基本上與全國(guó)卷的考試范圍相同。試卷基本延續(xù)了全國(guó)卷的命題風(fēng)格,繼續(xù)穩(wěn)字當(dāng)頭,平凡問(wèn)題考查真功夫,沒(méi)有出現(xiàn)偏題、怪題。試題所涉及的題型和背景是考生熟悉常見(jiàn)的,大部分試題上手容易,但也有個(gè)別試題思維含量高,能有效地考查學(xué)生的創(chuàng)新意識(shí)、思維品質(zhì)和學(xué)習(xí)潛能。整套卷難度分布合理,除選擇題、填空題和解答題的壓軸題難度較大外,其余試題均為基礎(chǔ)題和中檔題,這有利于學(xué)生考出好成績(jī),提高繼續(xù)學(xué)好數(shù)學(xué)的信心,進(jìn)一步引導(dǎo)師生做好第二輪復(fù)習(xí),更上一層樓。
一.試卷評(píng)析
試卷主要特點(diǎn)如下:
1.聚焦學(xué)科核心概念、主干知識(shí),考查基本數(shù)學(xué)素養(yǎng)
(1)從考查的內(nèi)容看:所涉及的知識(shí)點(diǎn)比較穩(wěn)定,都是高中數(shù)學(xué)中重要的概念以及由關(guān)聯(lián)概念生成的主干知識(shí),其中文、理科卷(除選做題10分)外,主干知識(shí)文、理科各占120分、110分。文科數(shù)學(xué)函數(shù)與導(dǎo)數(shù)27分、三角15分、數(shù)列17分、立幾22分、解幾22分、概率統(tǒng)計(jì)17分;理科數(shù)學(xué)因沒(méi)考概率統(tǒng)計(jì),故函數(shù)與導(dǎo)數(shù)32分、三角22分、數(shù)列17分、立幾17分、解幾22分。文科數(shù)學(xué)選擇題、填空題分別考查集合、復(fù)數(shù)、平面向量與線性規(guī)劃,而理科數(shù)學(xué)除以上內(nèi)容外還增加了算法框圖與簡(jiǎn)易邏輯題。
(2)從考查層次看:一般選擇題前4道題、填空題前2道題,屬于基礎(chǔ)題,主要考查高中數(shù)學(xué)的基本概念;選擇題、填空題、解答題的最后1題,即第10題、第16題和第21題是難題,主要考查思維的廣度、深度,思維的靈活性。批判性和創(chuàng)新性,以及數(shù)學(xué)學(xué)習(xí)的潛能;其余均為中檔題,主要在知識(shí)的交匯點(diǎn)處考查知識(shí)關(guān)聯(lián)與關(guān)鍵能力的聯(lián)系?;A(chǔ)題和中檔題中雙基內(nèi)容占到了相當(dāng)大的比重。
(3)從試題設(shè)計(jì)來(lái)看:試題立足于教材而不拘泥于教材,重視對(duì)基礎(chǔ)知識(shí)和通性通法的考查。試題的呈現(xiàn)和解答注重常規(guī)思路和基本方法。體現(xiàn)了回歸基礎(chǔ)、回歸教材、回歸數(shù)學(xué)本源,考查基本數(shù)學(xué)素養(yǎng)的命題思想。
2.聚焦關(guān)鍵能力,考查理性思維水平
試題以能力立意為核心,多角度、多層次地考查數(shù)學(xué)能力。如文理科大量題目充分考查了觀察、聯(lián)想、類(lèi)比、猜想、估算、直覺(jué)等思維方式;理科第5題、第10題、第15題、文理科第18題、第21題等考查了邏輯推理能力;文科第4題、第15題、第18題、理科第8題、第19題考查了空間想象能力;文科第20題考查了應(yīng)用模型的能力。
3.體現(xiàn)創(chuàng)新意識(shí),鼓勵(lì)主動(dòng)思考,促進(jìn)創(chuàng)新思維能力的發(fā)展
試卷對(duì)創(chuàng)新能力的考查著重體現(xiàn)在新情境中解決問(wèn)題的能力:一方面要求學(xué)生能夠打破常規(guī)思路,獨(dú)立思考,積極探究;另一方面要求學(xué)生能夠?qū)⒍喾N思維融合,創(chuàng)造性地解決問(wèn)題。
例如理科第19題,給出的是斜三棱柱,不易建立空間直角坐標(biāo)系,而文科第18題是折疊問(wèn)題,在新的情境中解決問(wèn)題,不僅需要學(xué)生有扎實(shí)的數(shù)學(xué)基礎(chǔ)、過(guò)硬的心理素質(zhì),更需要有分析問(wèn)題和創(chuàng)造性地解決問(wèn)題的能力。文、理科第21題主要考查導(dǎo)數(shù)的運(yùn)算、導(dǎo)數(shù)的幾何意義、運(yùn)用導(dǎo)數(shù)研究指數(shù)函數(shù)與二次函數(shù)的性質(zhì)等基礎(chǔ)知識(shí)和方法;考查函數(shù)與方程思想、化歸思想;考查抽象概括能力、綜合分析問(wèn)題和解決問(wèn)題的能力。該題充分體現(xiàn)了“用教材編高考題”的理念。通過(guò)指數(shù)函數(shù)與二次函數(shù)這兩個(gè)常用的重要的初等函數(shù)之間聯(lián)系,營(yíng)造了“似曾相識(shí)不相逢、親切又陌生”的問(wèn)題情境,激發(fā)學(xué)生主動(dòng)思考、積極探究的能動(dòng)意識(shí)和自覺(jué)行為,為學(xué)生創(chuàng)造性的思維活動(dòng)提供空間和展示平臺(tái)。
4.尊重文理差異,體現(xiàn)人文關(guān)懷
試題依據(jù)《考試大綱》中文理科內(nèi)容和課時(shí)要求的差異,以及高等學(xué)校文理科對(duì)數(shù)學(xué)的不同要求,在整體難度題目順序和內(nèi)容的選取上都有所區(qū)別。文理科試卷選擇題題目除了姊妹題有3道,填空題有1道外,其他題目都不相同。解答題除立幾題、解幾題和函數(shù)導(dǎo)數(shù)題及選做題是姊妹題外,其余試題完全不同且難度明顯有差別。這樣的設(shè)計(jì)比較符合文理科學(xué)生的實(shí)際,難度控制也較為合理,充分考慮到文理考生發(fā)展的不同需求和中學(xué)數(shù)學(xué)教學(xué)實(shí)際,同時(shí)也增強(qiáng)了文科學(xué)生(特別是報(bào)考藝術(shù)類(lèi)考生)學(xué)好數(shù)學(xué)的信心。
二.備考建議
1.回歸課本,重視概念
課本是最重要的教學(xué)資源,也是高考命題的源頭,從全國(guó)卷的命題特點(diǎn)來(lái)看,我們要重視課本,要重視課本中例題與習(xí)題的示范作用,讓學(xué)生能熟練運(yùn)用課本知識(shí)解決“基礎(chǔ)題”,養(yǎng)成從課本中基本概念出發(fā)思考和解決問(wèn)題的習(xí)慣,而不是過(guò)度地依賴(lài)教輔資料.在高考備考中,我們老師的主要任務(wù)就是讓學(xué)生系統(tǒng)掌握課本知識(shí),形成良好的數(shù)學(xué)認(rèn)知結(jié)構(gòu)。
《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn))》明確指出:“高中數(shù)學(xué)課程應(yīng)該返璞歸真,努力揭示數(shù)學(xué)概念、法則、結(jié)論的發(fā)展過(guò)程和本質(zhì)”。概念是解題的出發(fā)點(diǎn)與歸宿,是構(gòu)建數(shù)學(xué)理論大廈的基石,是提高解決問(wèn)題能力的前提,是數(shù)學(xué)學(xué)科的靈魂和精髓.但在實(shí)際的教學(xué)中,我們有的老師不講基本概念或者隨便一帶而過(guò),喜歡一味的鉆難題,這可能是與學(xué)生過(guò)不去,也是與自己過(guò)不去教師在教學(xué)中,應(yīng)根據(jù)學(xué)生的學(xué)情,講清數(shù)學(xué)概念、原理、方法、公式、定理,不是說(shuō)只做基礎(chǔ)不做難題,而是“磨刀不誤砍柴功”立足課本,夯實(shí)基礎(chǔ),怎么強(qiáng)調(diào)都不為過(guò)!
2.教師精心設(shè)計(jì),引導(dǎo)學(xué)生回歸概念,學(xué)會(huì)系統(tǒng)思維
經(jīng)過(guò)分析可知,試卷的題型都是一線老師熟悉的基本問(wèn)題,我們很多學(xué)生花了大量的時(shí)間訓(xùn)練,效果即不盡如人意,原因何在?例如,有關(guān)函數(shù)的零點(diǎn)問(wèn)題的試題層出不窮,解法千奇百怪.教學(xué)中,如果不加別全盤(pán)移植,教師只講如何解題,不講回歸,學(xué)生只會(huì)程式操練,而不知函數(shù)零點(diǎn)的含義及其表征之間的聯(lián)系,更不會(huì)建構(gòu)研究處理函數(shù)零點(diǎn)問(wèn)題的數(shù)學(xué)認(rèn)知結(jié)構(gòu),那么就會(huì)阻礙學(xué)生的數(shù)學(xué)認(rèn)知結(jié)構(gòu)的發(fā)展,壓縮學(xué)生的探究成長(zhǎng)空間,教學(xué)效果大打折扣.大道至簡(jiǎn)、平淡是真,我們的教學(xué)應(yīng)回歸基本概念,讓學(xué)生學(xué)會(huì)系統(tǒng)思維.實(shí)際上,函數(shù)零點(diǎn)是中學(xué)數(shù)學(xué)的主體內(nèi)容,是函數(shù)、方程、不等式的一個(gè)知識(shí)交匯點(diǎn),比如,函數(shù)零點(diǎn)的含義與表征,函數(shù)零點(diǎn)的判定與求解,函數(shù)零點(diǎn)的分布與個(gè)數(shù)情況的討論,函數(shù)零點(diǎn)在研究函數(shù)、方程、不等式中的應(yīng)用等,都可以歸結(jié)為函數(shù)零點(diǎn)問(wèn)題,教學(xué)中如果教師能連點(diǎn)成線,由線到面,精心設(shè)計(jì)“問(wèn)題串",引導(dǎo)學(xué)生回歸函數(shù)零點(diǎn)的概念展開(kāi)系統(tǒng)研究,那么教學(xué)的效果就會(huì)大不一樣了。
3.解題教學(xué)中,著重培養(yǎng)分析問(wèn)題,解決問(wèn)題的能力
高考復(fù)習(xí)的教學(xué)主要是解題教學(xué),樹(shù)立正確的解題教學(xué)觀很重要,解題教學(xué)的首要目的是鞏固概念,最終目的是學(xué)會(huì)思考,過(guò)程中要培養(yǎng)良好的解題習(xí)慣、發(fā)展分析和解決問(wèn)題的能力.通過(guò)“講解題,不講怎樣解題”“講解法,不講如何想到解法的方式給學(xué)生灌輸技巧,最后總結(jié)為“解法一一技巧”,這既加重學(xué)生的學(xué)習(xí)負(fù)擔(dān),又禁錮學(xué)生的思維,必須徹底糾正!解題教學(xué)就要突出分析問(wèn)題的過(guò)程,充分暴露思路探索過(guò)程,充分暴露遇到解題障礙的解決過(guò)程,引導(dǎo)學(xué)生對(duì)題目信息進(jìn)行加工和挖掘,著重培養(yǎng)學(xué)生分析問(wèn)題解決問(wèn)題的能力。
4.學(xué)生跳出題海,老師跳進(jìn)題海
要適應(yīng)全國(guó)卷的命制方式,需要高中的數(shù)學(xué)教學(xué)與備考著眼于讓學(xué)生“理解數(shù)學(xué),奢望讓學(xué)生在題海中理解數(shù)學(xué),它帶來(lái)的后果必將是讓學(xué)生只會(huì)依葫蘆畫(huà)瓢或生搬硬套.這種缺乏靈活性沒(méi)有真正理解數(shù)學(xué)問(wèn)題本質(zhì)的備考在全國(guó)卷“基礎(chǔ)中考理解的模式下肯定難有成效. 題海戰(zhàn)術(shù)出來(lái)的學(xué)生,解題“套路”意識(shí)很強(qiáng),但是,不少試題你會(huì)發(fā)現(xiàn)“套路”“套”不進(jìn)去,甚至走向了“不歸路”.
學(xué)生跳出題海,做老師精選的試題,那么老師為了更好的選題,則應(yīng)該跳進(jìn)題海.給學(xué)生出一道題,老師可能要先做十道題,如果只是看而不做題,沒(méi)有切身體驗(yàn),很難使例題典型,講解精彩,并會(huì)造成“該講的講不出,不該講的拼命講;事實(shí)上,決定復(fù)習(xí)效果的關(guān)鍵因素不是題目的數(shù)量,而在于題目的質(zhì)量和處理水平,一道好的題目,本身就蘊(yùn)含了豐富的思想方法,經(jīng)過(guò)適當(dāng)變通、聯(lián)想、拓展、延伸,以例及類(lèi),探求規(guī)律,老師就可以做到“講解一題,復(fù)習(xí) 一片”的效果。
5.重視計(jì)算能力
對(duì)于數(shù)學(xué)計(jì)算的問(wèn)題,我們往往有一個(gè)誤區(qū),認(rèn)為小學(xué)生才需要培養(yǎng)數(shù)學(xué)計(jì)算的能力,而高中生需要掌握的是宏觀思考的能力,不再需要培養(yǎng)數(shù)學(xué)計(jì)算的能力其實(shí)這是有失偏頗的,數(shù)學(xué)計(jì)算是數(shù)學(xué)知識(shí)的基礎(chǔ),只要學(xué)生學(xué)習(xí)數(shù)學(xué)知識(shí),就必須強(qiáng)化數(shù)學(xué)計(jì)算的能力,尤其在全國(guó)卷的背景下,計(jì)算難度加大,一旦學(xué)生出現(xiàn)計(jì)算出錯(cuò),后面的所有過(guò)程可能都是錯(cuò)的或者根本無(wú)法進(jìn)行下去.
教師在平時(shí)的教學(xué)中,要多引導(dǎo)學(xué)生掌握一些常用的數(shù)學(xué)運(yùn)算的技巧、方法和規(guī)則,可以精選一些計(jì)算量相對(duì)懸殊較大的題目,用充裕的時(shí)間去想去做并結(jié)合這些實(shí)際題目適時(shí)靈活地運(yùn)用概念、恰當(dāng)?shù)剡x擇公式、合理地使用數(shù)學(xué)思想方法從而達(dá)到簡(jiǎn)化計(jì)算、提高計(jì)算速度的目的.
6.加強(qiáng)學(xué)生自主探究能力的培養(yǎng)
在平時(shí)的教學(xué)中,老師包辦讀題過(guò)程和解答學(xué)生重復(fù)模仿解題的做法比比皆是,學(xué)生失去了自主探究的機(jī)會(huì),這樣的結(jié)果就是,老師很累,效果卻不理想而且這種備考方法顯然適應(yīng)不了全國(guó)卷的以能力立意的命題特點(diǎn)。
教育家蘇霍姆林斯基說(shuō)過(guò):“沒(méi)有自我教育,就不是真正的教育”.“飯是要親自吃的”。教師應(yīng)積極調(diào)動(dòng)學(xué)生參與課堂,點(diǎn)燃學(xué)生主動(dòng)思維的火花給學(xué)生一定的探究平臺(tái), 時(shí)間和空間,讓學(xué)生在探究中發(fā)現(xiàn)錯(cuò)誤,尋找錯(cuò)因,探究正解,在辨析中明理,在理解中內(nèi)化,在糾錯(cuò)中升華,這樣,比光聽(tīng)教師講要深刻的多,效果要好的多。